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Excess Noise in a Hopping Model for a 
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We consider a model for independent charged particles, hopping on a lattice 
with static disorder in the waiting times. The excess current noise is calculated 
and shown to be related to resistance noise and arising from mobility fluc- 
tuations. It is also related to the four point super-Burnett-function. The strength 
of the noise is calculated at small frequencies for weak disorder (classical long 
time tails) and for strong disorder, when it may behave like 1If. In that case the 
Hooge factor equals the fraction of deep trapping centers. 

KEY WORDS:  1If noise; mobility fluctuations; transport in disordered 
systems; hopping model; long time tails. 

1. I N T R O D U C T I O N  

When a steady current I flows through a resistor R two distinct sources of 
noise are observed/14) The equilibrium current fluctuations (Johnson 
noise) have a white noise spectrum of magnitude S~(co) = 4kT/R, where k is 
Boltzmann's constant and T the temperature. In addition there is an excess 
(nonequilibrium) current noise, in the presence of an electric field, with a 
power spectrum described by the phenomenological relation of Hooge, (2) 

S~XC(~o) = ~aI2/Nf (t.1) 

where f =  a~/2n is the frequency and N is the number of charge carriers 
(charge e). The Hooge factor c~/ is a dimensionless constant, typically of 
the order 10 - 4  10 -3  in metals and semiconductors. This 1If scaling holds 
up to frequencies at which the excess noise is lost in Johnson noise and 
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down to extremely low frequencies (e.g., 10-7 Hz (1,5)), limited by the time 
available for an experiment. The appearance of the factor 1/N in (1.1) sup- 
ports the idea that 1If  noise is in general a bulk phenomenon. The propor- 
tionality S~XC(o)~I 2 suggests that the current fluctuations result from 
(equilibrium) resistance fluctuations with a power spectrum ~6) 

SR(O) /R  2 = S~XC(oj)/I 2 = cr (1.2) 

Since SR(CO) is independent of the current, these (equilibrium) fluctuations 
are also present without an applied electric field. The Johnson noise 
voltage, passed through an appropriate band pass filter, is proportional to 
the resistance. Voss and Clarke (6) and Beck and Sprui( 71 showed that 
resistance fluctuations can be measured by examining the fluctuations in 
the strength of the filtered Johnson noise power, and found 1If  noise as in 
(1.2). 

Tremblay and Nelkin ~8) put these ideas on a firmer theoretical footing 
and showed that such measurements probe the four-point current 
correlation in equilibrium. 

Similar relationships between the nonequilibrium two-point current 
correlation function and the equilibrium four-point current correlation 
function (Burnett function) have been derived for a variety of models/9-1~) 

The resistance can be expressed in the mobility # or, equivalently, in 
the diffusion coefficient D, i.e., R = (LZ/ktN) = (L2kT/eZDN),  where L is the 
length of the sample in the direction of the field. Fluctuations in R may 
occur through fluctuations in the number of carriers ~12) or in the 
mobility. (2) There exist strong experimental indications that, in general, 
mobility fluctuations are responsible for l / f  noise in semiconductors (2~ and 
(in combination with temperature fluctuations) also in metal films. ~) 

The purpose of this paper is to explore to what extent the long time 
tails, as found in fluids and systems with static disorder (e.g., Lorentz 
gases) (13'14~ could provide a possible mechanism for explaining the noise 
properties, described above. Thus we study the nonequilibrium current 
fluctuations and the equilibrium resistance fluctuations for a lattice random 
walk model with quenched disorder and show that they satisfy Eq. (1.2). 

The basic idea, frequently used in the noise literature, ~2'9'15) is that the 
excess noise originates at many independent sites, distributed 
homogeneously throughout the medium. Charge carriers are continuously 
entering and leaving the wells at these sites with a characteristic escape or 
waiting time ~, at the nth lattice point. These ~. are considered to be 
independent random variables with a site independent waiting time dis- 
tribution p(r). The distribution of waiting times, especially of "deep" wells 
with long waiting times, determines the small-frequency behavior of the 
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spectral density of current noise. The random distribution of these wells 
tries to model the spatial fluctuations in the mobility of the charge carriers, 
i.e., fluctuations in the local scattering throughout the medium, but 
does not model fluctuations in the number of  carriers, as occurring in 
McWorter's model ~12) or in the hopping models with conducting and 
trapping states at each lattice site. ~16"9'11) 

The study of hopping models with quenched disorder as a possible 
model for a resistor with excess current noise has been initiated by 
Lehretal.  1~4) These authors have shown that hopping conduction on a 
weakly disordered chain leads to l/x/- ~ noise. In the present paper their 
work is extended to higher-dimensional systems with weak and strong dis- 
order. Preliminary results have already been reported in Ref. 17. 

An interesting feature of some of the conduction models with 
quenched disorder (including d-dimensional Lorentz gases and several hop- 
ping models ~3~ and lattice gas models ~~ is that the long time tails in the 
current correlation function are of dynamic origin, and exist even if all 
moments (~n) (n=0,  1, 2,...) of the waiting time distribution are finite 
(weak disorder). 

A particular interesting example is the quantum mechanical Lorentz 
gas in d dimensions (a case of weak disorder), where the excess current 
noise behaves a s  seixc((D)~O) (d-4)/2, as shown by Kirkpatrick and 
Dorfman. (18) 

On the other hand, the long time tails in the continuous time waiting 
time models 09'16'9) are of static origin, i.e., they depend on the presence of 
algebraic tails (strong disorder) in the static waiting time distribution p(~). 
If {rn) (n=0,  1,2,...) is finite, all tails are absent. A discussion of the 
dynamic versus static origin of long time tails is given in Ref. 20. 

In the remaining part of this section we briefly review some concepts 
needed explicitly in the paper. The spectral densities or power spectra of 
interest here are the Fourier transforms of the current and resistance fluc- 
tuations. The instantaneous or fluctuating current Ix(t ) in the field direc- 
tion can be identified as the spatially averaged velocity of N independent 
charge carriers 

N 

/~(t)= (e/L) ~ vjx(t ) (1.3) 
j = l  

If a (small) uniform electric field E is applied in the x direction, there exists 
a nonvanishing steady current I =  eN{vx) /L ,  where ( . . - )  is a steady state 
average. The spectral density of the longitudinal current fluctuations is 
defined as 

S,(cn) = 4 (oo dt cos e)t[ </~(t) Ix(O)) - ( /~)2]  (1.4) 
J o  
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where the current correlation for independent charge carriers is related to 
the nonequilibrium (e C0) velocity autocorrelation function (VACF) 
~01t(t; e) in the presence of a dimensionless field ~ =eEl /2kT:  

( /~( t ) /~(0))  - ( /~)2 = (e2N/L 2) q~it(t; ~) (1.5) 

The longitudinal and transverse VACF's are defined as 

(P[[(/; ~)= (Vx( t )  I)x(O) ) -- ( V x )  2 

t p •  ( a # x )  
(1.6) 

Thus the current noise is 

S1(oo) = (4e2N/L 2) 81e~otl(ico; a) (1.7) 

where f ( z ) =  9 .z f ( t  ) denotes the Laplace transform. 
Next, we consider resistance fluctuations in absence of a field. Since 

the hopping model to be considered does not admit any fluctuations in N, 
we consider only fluctuations in the diffusion coefficient D. To define D 
fluctuations we introduce a fluctuating diffusion coefficient 

D(t, ~) = �89 - x(z)] 2 (1.8) 

close to a definition of Stanton and Nelkin. (9) Its expectation in a 
stationary initial ensemble, 

(D(t ,  , ) )  = dt '(Vx(t ')  vx(O)) (1.9) 

yields the diffusion coefficient D in the long time limit. The autocorrelation 
of D fluctuations in a stationary initial ensemble is then 

( D ( t , ~ ) D ( t ' , r ' ) ) - ( D ( t , r ) ) ( D ( t ' , ~ ' ) ) ~ - C D ( t - t ' )  (t, t' large) 

(1.10) 

which involves a four-point correlation function. For large values o f  t and t' 
this function will only depend on the time difference t -  t'. This limiting 
value will be denoted by CD(t -- t'). The spectral density of D fluctuations is 
therefore 

S D(O~ ) = 49teC D( iCo ) (1.11 ) 

Stanton and Nelkin (9) have in fact discussed the spectral density of the 
band-filtered Johnson noise power P, where ( P ) = ( 4 k T / R ) A f  is the 
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average Johnson noise power, and A f  is the width of the frequency band. 
Under certain assumptions on the behavior of the four-point current 
correlation function or (equivalently for independent charge carriers) of the 
four-point velocity correlation function multiplied by N, these authors were 
able to show that 

Se(co)/ ( P ) 2 = SD(o~)/ND 2 (1.12) 

Here the correlation function of D fluctuations could be expressed as 

CD(t) = dr d r ' ( ( v x ( t + z )  v x ( t ) v x ( r ' ) v x ( O ) ) )  (1.13) 

where ( ( . . . ) )  is the fourth cumulant, defined as 

( ( A I A z A 3 A 4 ) )  = ( A 1 A 2 A 3 A 4 )  - ( A ~ A z ) ( A 3 A 4 )  

-- ( 1 1 1 3 ) ( 1 2 1 4 )  -- ( A I A 4 ) ( A 2 A 3 )  (1.14) 

For the present model it will be verified (Section 5) that Stanton and 
Nelkin's assumptions regarding ( ( . . . ) )  in (1.13) are correct. 

The outline of the paper is as follows. In Section 2 we introduce the 
symmetric random jump rate model (SRJM) and derive the response and 
Green's functions. In Section 3 we study the VACF and the current noise 
and in Section 4 the noise in the D fluctuations, and find that Eq. (1.2) is 
satisfied. The equivalence between Burnett functions and D fluctuations is 
shown in Section 5. In Section 6 the response function is calculated for 
weak and strong disorder, and applied in Section 7 to calculate spectral 
densities for strong disorder, showing behavior close to 1/f noise. In Sec- 
tion 8 we draw some conclusions. 

2. R A N D O M  J U M P  RATE M O D E L  

The model of interest here is a random walk or a hopping model on a 
random lattice with site disorder. The lattice is a d dimensional hypercubic 
lattice with lattice distance l and with M sites. On the lattice there are N 
independent hopping particles, each carrying a charge e. Only hops 
between nearest-neighbor sites are allowed. Let w, = 1/z. be the jump rate 
from a given site n to the nearest-neighbor site n + b, and T,/C the waiting 
time at site n, where C = 2d is the coordination number of the lattice. Here 
w. and r .  are random variables with a site-independent probability dis- 
tribution, fi(w) dw = p(r) dr. If a uniform electric field E is applied along 
the positive x axis, a particle gains an amount of energy 2e = e E l / k T  
(measured in thermal units), when hopping in the direction of the field, and 
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its jump rate from site n to its nearest-neighbor site n + b is given by 
w, exp(ebx). 

Let P.(t) be the probability that the hopping particle is at position 
r = nl at time t. It satisfies the following master equation: 

[~ .=~ [W.+be-~bxP,+b--w.e~bxP.] = --(~WP).  (2.1) 
b 

where b runs over all nearest-neighbor sites. Here the operator q~ is defined 
a s  

q~ = ~ e~bx[ 1 -- ~b] = ~ ( e~bx -- g~bx~b) (2.2) 
b b 

where the shift operator ~b acts as ~ b f ( n ) = f ( n  + b). 
The jump rate matrix is diagonal in coordinate representation with 

elements W,m=W,6,m, and the master equation has the stationary 
solution ~ 1/w. ~ 3,, normalized as 

P.(oo)=z./~m 3m= v%/M (2.3) 

Because the number of lattice points M is sufficiently large, we are allowed 
to identify the site average with the average ( . . .  } over the distribution 
p(3), so that 

1/v - (3} = ( l /M) Z 3m (2.4) 
Ill 

From here on the brackets ( . . - }  denote an average over the random 
variables {3.} or {w,}. 

In the present model Eq. (2.3) is taken as the initial distribution. Hence 
the one-time distribution P,(t) is always the stationary distribution (2.3). 
This steady state sustains a drift velocity 

( v x > = l ~ n x ( k . }  
n 

as follows from (2.1) and (2.3), and corresponds to a steady current I =  
eN(vx}/L,  where L is the length of the sample in the direction of the field. 
For small fields one recovers Ohm's law I =  V/R with a resistance R and 
mobility t~, defined as 

R = L2/(e21~N) = kTL2/(eZvI2N) 
(2.6) 
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For studying the fluctuations in the current we follow the method in 
Ref. 21 and introduce the response function 

~(q, z; e) = dte-Zt~e-iq("-m)l(P(n,t;m,O)) 
tl,m 

(2.7) 

It is the Laplace transform of the generating function for walks where the 
particle has moved a distance ( n - m )  from its starting point m. Since the 
master equation (2.1) describes a Markov process, the two-point dis- 
tribution P(nt;m0) can be expressed in the conditional probability 
P(nt [ m0), i.e., 

P(nt; m0) = P(nt [ m0) Pm(O)=P(nt I m0) Pro(~ (2.8) 

Thus, we deduce from (2,1) and (2.7) 

~(q, z; e) = v((z + q~W) ' T ) q q  (2.9) 

where the matrix of waiting times T=- W-1 is diagonal in coordinate space 
with elements T., = r. = 1/w.. Denoting the matrix (z + q~W) 1 T by A we 
observe that the average matrix (Anm) is translation invariant, because the 
distribution of the randomness itself is translation invariant. Thus A is 
diagonal in Fourier space, i.e., (A)qq, = 6qq,(A )qq with 

(A)qq=N -1 ~ e-iq("-ml'(Anm) (2.10) 
nlrn 

Subscripts q always refer to the Fourier representation, and subscripts n, m 
to the coordinate representation. 

Using the relation 

( z + ~ W )  -1=  Tz 1 -~z - z  +~(zT-t-q))-I ~z -2 

the response function (2.9) may be rearranged as 

~(q,z;e)=z-l-z-2v~(q)+z-2vcP2(q)G(q,z;e) (2.11) 

where the detailed dependence of ~ on the randomness is contained in the 
Green's function: 

G(q , z ; e )= ( ( zT+qS)  1)qq (2.12) 

This quantity will be calculated explicitly in Sections 6 and 7. The 

822/41/5-6-4 
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matrix ~b, 
ponents 

defined in (2.2), is diagonal in Fourier space and has corn- 

d 

q~(q) = 2 cosh e - 2 cosh(e - iq~l) + 2 ~ (1 - cos G l )  
a = y  

~- 2iqxl sinh e + (qxl)Z(cosh e - -  1 ) + q212 + "'" (2.13) 

The last equality applies to small q values. 

3. V A C F  A N D  C U R R E N T  NOISE 

The response function ~(q, z; e) contains all macroscopic quantities of 
interest, e.g., its q expansion generates the (Laplace-transformed) moments 
of displacement. These moments, in turn, can be expressed in terms of the 
Green's function G(q, z; ~) with the help of (2.11). 

We start with the moments of displacement 

i ~(q, z; a) =~.~<[AG(t )]  m ) 
0 

(3.~) 

where ~z denotes the Laplace transform, and 

J G ( t )  = l[n~(t) - n~(0)] (3.2) 

For instance, if e = 0  one finds immediately from (3.1) and (2.11) that 
( [AG( t ) ]  2 ) = 2Dt with O = vl 2. 

Lattice equivalents of velocity correlation functions can be introduced 
as derivatives of these moments, writing formally AG(t )  = ~o G(r )  dr: 

( G >  - (d/dt)<AG(t)> 

<v~(t) v~(0)> = �89 [3r~(t)]2> 
(3.3) 

A convenient way to express these correlation functions (1.6) in ~(q, z; e) 
and G(q, z; e) is for the drift velocity, 

q 

< G > = - i ~ q ~  [ ~ ( q ' z ; e ) ]  ~ =o=2vI(sinhe)6~x (3.4) 

in agreement with (2.5), and for the VACF's, 

l ( a )  2 q 
4,(~;~)=~ ~ [~(q,z;~)]-' =o 

= v/2 cosh ~ + (<vx>2/v)[G(O, z; ~ ) -  v/z] (3.5) 
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and 

qS• e) = vl 2 =- D (3.6) 

In absence of a bias field ( G )  = 0, and ~b• 0) = (~0(z) = D is independent 
of z, where the VACF behaves as 

~Oo(t) = (v~(t) v~(o) ) = D6(t)  (3.7) 

for e = x, y,..., d, as first shown by Haus et aL (22) We also note that the first 
term in (3.5) contributes a term (D cosh e)6(t)  to ~oll(t; e), so that in the 
limit t--, 0 + one has the relation 

,v,(O + ; ~ ) =  <vx >2(v~ - v)/v (3.8) 

In deriving this result we used (2.12) and (2.10) to write 

lim zG(O,z;e)= ( T  1)qq lq=O~..~ - ( , . f - - l )  ~___.yc~ 
z ~ o o  

(3.9) 

where vo~ = ( I / z )  is the bare, short time or high-frequency average jump 
rate, which approaches a plateau value in this model. It is proportional to 
an Enskog-type (i.e., short time) diffusion coefficient D~ = v~/2.(8,2o,23) The 
actual diffusion coefficient D = v l  2 with v =  1 / ( r )  is comparable to the 
mode-coupling diffusion coefficient, which is renormalized by the 
fluctuations. (23) 

Next we determine the spectral density of current fluctuations, which 
is related to the VACF in (3.5) on account of (1.5), and we find 

S,(co) = (4kT/R) cosh e + (412/Nv) 9teG(O, ie); e) (3.10) 

Here I =  ( e N / L ) ( G )  is the steady nonvanishing current, which reduces for 
small fields (e=eIE/2kT), where (vx)~--2vlE, to Ohm's law with a 
resistance R=kTL2/(e2DN).  The current noise (3.10) has a white 
background, which reduces for small fields to the standard Johnson noise 
4kT/R. The second term is the excess current noise S~XC(~o) in the presence 
of a field, and is proportional to 12. 

The transverse current noise, 

S • (co) = ( 4e2N/L~) ~teO • (ico; e) = 4k T/Ry (3.11) 

contains only Johnson noise, where Ry = kTL~/(e2DN) is the resistance of 
the sample for a current flowing in the y direction, where the sample length 
is Ly. 
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Another quantity of interest is the total excess current noise, which 
follows from (3.8) as 

I~176 d~o 
-co ~ -  S~XC(~0) = (e2N/L 2) ~011(0+; e) = (I2/N)(v~ - v)/v (3.12) 

This quantity, and therefore the excess noise itself, vanishes on a uniform 
lattice without disorder, as it should. 

4. M O B I L I T Y  A N D  R E S I S T A N C E  F L U C T U A T I O N S  

In general, fluctuations in the resistance R = L~/(e2#N) in (2.6) result 
from fluctuations 6N in the number of charge carriers and from fluc- 
tuations 6/~ = 6D/kT in the mobility or diffusion coefficient. In the present 
model N~Y, .  P .  is a constant and does not fluctuate. In this section we 
therefore consider D or /t fluctuations, and define a fluctuating diffusion 
coefficient (in the absence of an electric field) as 

D(t, z) = �89 -- x(r)) 2 = �89 - nx(,)) 2 (4.1) 

with the corresponding averages: 

(D(t,~)>=�89 (nx-mx)2~,P(nt;m~)> (4.2) 

<D(t,z)D(t ' ,z ' )>=�88 ~ n 2 , ' 2 ( x-- rnx) (nx-- mx) 
\ n , m  

II ' , l la '  

• c~,~t,P(nt; mr; n't'; m '~ ' ) /  (4.3) 

We could set v '=  0 because of stationarity. The D fluctuation in (4.3) is a 
fourth-rank tensor with cubic symmetry, and it is straightforward to extend 
the present calculation to the (xxyy) element. Since the master equation 
(2.1) for a fixed set of jump rates {w.} describes a Markov process, two-, 
three-, and four-point distributions can be expressed as product of con- 
ditional probabilities, as in (2.8), e.g., P(nt;n't ';mO)=P(ntln't ')  
P(n't'[mO)Pm(oo) when t > t ' > 0 .  

The conditional probability obeys the initial condition 
P(n, 01m, 0 )=6 .m and satisfies the forward and backward master 
equation: 

t3tP(nt ] n ' t ' )=  -O,,P(ntln't ')  

= -~b(n) w.P(nt [ n't ') = -w.,q~(n') P(nt I n't ') (4.4) 
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In the field free case - ~ ( n ) = ~ ,  ((~q-(~-l--2) with ~ = x ,  y ..... d is the 
discrete Laplacian with fs + 6~p). Using the forward master 
equation in (4.3), performing a partial summation and employing the 
relation ~ (n ) (nx - rex )  2-= --2, it follows immediately that 

(D(t, ~))=I2 ( ~  w.P(nt;mz)) 
(4.5) 

In the last equality we used the relation P.(t)=P.(oo) as given in (2.3) 
with D = vF. In general (D(t,  r ) )  may be expressed as an integral over the 
VACF on account of (4.1) and (3.3), i.e., 

(D(t, z)) = ds(vx(t) Vx(S)) = ds(vx(s) vx(0)) (4.6) 

It depends only on ( t - z ) ,  since the average is over a stationary initial dis- 
tribution. It is a special feature of the isotropy of the jump rates in our 
model that (D(t, z)) is actually time independent as follows also from 
(4.6) and (3.7). 

Next, consider the four-point correlation in (4.3), for which we find by 
the same manipulation (for t >  r > t ' >  r') 

(D(t,  r )D(t ' ,  z'))= �89 l E w.(n'~-m'x) 2 c3,,P(nt; mr; n't'; m'z())  
n m  

11'11o' 

(4.7a) 

By carrying out the m summation in Eq. (4.7a) we see that the left-hand 
side of (4.7) is independent of ~ for all 0 < r < t. Next, 

(D(t, T) D(t', r') ) 

_=�89 ~ w.(n,x_mx)20cP(ntln,t,)P(n,t, lmz,)pm(oO)) 
n , n ' , m  

ll4(~n,.nlWnP(nt]n,lt)[~)(n,) , 2 ) = - (nx--mx) ] w.,P(n't'l mz') Pm(oO) 
n, , 

(4.7b) 

In the next step we want to show that the left-hand side of (4.7b) is 
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independent of v'. To that purpose we evaluate the commutator on the 
third line of (4.7b) to find 

[~(n), (n~-  m~) 2] = (~x + ~ - 1 ) -  2 ( ~ -  ~ ;~ ) (n~-  mx) (4.8) 

and use the following identities: 

(nx-mx)  P(nt I mr') Pm(oO) = 0 
I n  

(4.9) 

(D(t, r) D(t', r') ) -~141~ WnW.,P(nt; n't') I 

=(vl4/M) I~,wnP(ntl  n ' t ' ) l=-Co( t - t ' )+D2 (4.10) 

In general the four-point correlation function involved in the D fluc- 
tuations, will depend on three time differences. Owing to the isotropy of the 
present model, however, it is independent of r and C, and depends only on 
the time difference t -  t'. 

The Laplace transform of Co(t) can be obtained from (4.10) and (4.4) 
and yields 

C o( z ) = ( vl4/ m)  ( ~nn, [ W( z + qb W) - l ]..' l -- vl4/z 

= vl4[G(O; z; e = O) - v/z] (4.11) 

where we have used (2.12) and the matrix relation W(z+q~W)-~= 
(zT+<b) -1 with T=  W -1. On account of (2.10) the double sum in (4.11) 
represents the matrix element (q, q') = (0, 0) of this matrix in Fourier space. 
Thus we have expressed the fluctuations in the diffusion coefficient of one 
given particle in terms of the response function G(q, z; e) for the SRJM, 
and the spectral density of D fluctuation is given by (1.11). 

w.P(nt [ mr') Pm(C~3) = W.Pn(~) = v/M 
I l l  

The first equality holds at t = r' and its derivative vanishes at all times; the 
second line of (4.9) follows from the stationarity of Pm(~). 

After inserting (4.8) into (4.7b) and summing over m, one can show 
with the help of the first identity in (4.9) that the second term in (4.8) gives 
a vanishing contribution. The second identity in (4.9) shows that 
(~x + ~ 1 )  in (4.8) can effectively be replaced by 2. Performing the m sum- 
mation one finally obtains 
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It is also instructive to consider the mobility fluctuations explicitly, 
and we define a fluctuating mobility as 

1 
IJ(t) = ~ ~ N.(t) t~. (4.12) 

n 

where N.(t) is the number of charge carriers at site n at time t, N their total 
number, and 12.=lZw~/kT the local (frozen-in) mobility. The mobility, 
averaged over random walks but not over the random variables w. 
(indicated by ( ' " ) R W )  is by definition related to the one-time probability 
P.(t): 

" e . ( t )  12 /kv (4.13) 

where we used the stationarity condition P.(t)=P.(m) and (2.4). In the 
present model (4.13) is independent of {w. }. 

For calculating the two-time mobility correlation we have to keep 
track on the identity of the particles. Let N~.(t) be equal to unity if the ith 
particle is at site n at time t, and zero elsewhere. Then it follows that N.  = 
Ze N~, and owing to the independence of the particles one has 

(N.(t)N.,(t'))Rw=N(N-1)P.(t)P.,(t')+NP(n, t;n', t') (4.14) 

Using (4.14) we obtain for the two-point mobility correlation function, 
averaged over the static disorder, 

1 
( (#( t )  ~(c) ) . w  - (~ ) %  ) = ~ c . ( t -  t') (4.15) 

where 

C,(t-  t')= (.~ l~.l~.,[P(nt; n't')-- P(nt) P(n't')] ) (4.16) 

The factor (I /N) in (4.15) arises from the independence of the hopping par- 
ticles. By comparison with (4.10a) and (4.14) we can identify 

Cu(t) = (kT) 2 CD(t) (4.17) 

The main purpose of this section was to find the connection between 
the excess current noise S~x~ and the resistance or mobility fluctuations. 
Since fluctuations in resistance R, mobility #, and coefficient D are related 
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as 6R= -(R/l~)'6#= -(R/D)6D, the spectral density of resistance fluc- 
tuations is 

SR(~o)/R z = S,(e))/# 2 = (4/Nv) 9teG(O, ia); e = 0) (4.18) 

Also the excess current noise S~*~(e)), given by the second term in (3.10) 
contains G(0;/co; e ~0) .  We will show in the next section that the field 
dependence of G(0, z; ~) is negligible for small e for dimensions d >  2, and 
of minor importance for d = 1 and d = 2. For  the SRJM in d ~> 3 we have, 
therefore, shown that for small I 

s T o ( c o ) / I  2 = S R ( ~ o ) / R  2 = S . ( c o ) / U  ~ (4.19) 

This equation is valid for all frequencies and arbitrary disorder. The 
integrated spectral density of resistance fluctuations can be deduced from 
(4.11) and (3.9) as 

i v do) R 2 voo - v (4.20) 
_ ~ ~ SR(c~ - N v 

This is in complete agreement with the integrated excess current noise in 
(3.12) in the presence of a field. 

5. B U R N E T T  C O R R E L A T I O N  F U N C T I O N  A N D  R E S I S T A N C E  
F L U C T U A T I O N S  

In the present section the electric field is again set equal to zero. For 
the present model there exists in this case a relationship between the 
correlation function of resistance fluctuations and the Burnett correlation 
function flU) appears in generalized hydrodynamics and is defined as the 
second derivative of the fourth cumulant: (24) 

f l ( t ) = l  (~t)2 { ( [dx( t )]4) -  3([Ax(t)]2) 2} 

f fo = d~ d ~ ' ( ~ v x ( t ) v x ( ~ ) v x ( ~ ' ) v x ( O ) ) )  (5.1) 

where ( ( . . . ) )  is defined in (t.14). The Burnett correlation function is 
actually a completely symmetric fourth-rank tensor with cubic symmetry, 
which has two independent elements (xxxx) and (xxyy). It is 
straightforward but rather lengthy to extend the present calculation to the 
component (xxyy). The result will not be given here. 
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The Laplace transform fl(z) can be expressed in the response function, 
as shown in Appendix A: 

fl(z) = ~ \~qx/(~0 ~4 [~(q' Z; 0)] i q=. (5.2) 

or with the help of (2.11) in the Green's function: 

1 4  IG(0 ' 0)--Y 1 ~(Z):-~ vl --~ Fl 4 Z; (5.3) 

The first term in (5.3) contributes a term (v14/12)6(0 to fl(t) and by the 
same arguments as given in (3.8) and (3.9), one finds that f l (0+)= 
v(v ~ - v) 14. 

Comparison of (4.11) and (5.3) shows that the Burnett correlation 
function flU) for t > 0  equals the correlation function Co(t) of D fluc- 
tuations or resistance fluctuations. 

In order to test for the present model the assumptions made by Stan- 
ton and Nelkin regarding the behavior of the four-point current correlation 
function, we consider the four-point velocity correlation function in more 
detail. To do so we write the D fluctuation in (4.3) with the help of (4.1) as 

(D(t, ~)D(t', r ' )} = ds , ds'(vx(t) vx(s) vx(t') vx(s')} (5.4) 

Because the left-hand side of (5.4) is independent of z and z' in the interval 
t > r > t ' > r '  on account of (4.10), the integrand of (5.4) in the 
corresponding interval is 5 ( t - s )  cS(t ' -s ' )[Cz)( t -  t') +D2].  For different 
time orderings one has a similar expression proportional to 
~ ( t -  s') 6 ( t ' -  s) and to 6 ( t -  t') 6 ( s -  s'). 

The result of (5.3) that fi(t) - (vl4/12) 6(t) + fl(0 +) for t ~ 0, shows that 
the four-point correlation function in (5.1) has an additional singular 
short-time contribution when all four time arguments are close together, so 
that finally the four-point velocity cumulant becomes 

<<v~(t) vx(~) v a t ' )  vx(*') )> 

= 1_ vP6(t - t') 6(t - z) 6(t' - ~') 
12 

+ [ 6 ( t -  r) 5(t' --r') + 6 ( t -  z') 6 ( t ' -  r)]  CD(t-- t') 

+ 6(t-- t') 5(r -- r ') C o ( t -  r) (5.5) 
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This shows that two pairs of velocities are only delta correlated in the 
SRJM, and verifies one of the assumptions of Stanton and Nelkin (9) that 
the four-point velocity correlation function is only nonvanishing if the time 
differences t - v  and t ' - V  (or permutations thereof) do not exceed some 
microscopic correlation time. 

6. FLUCTUATION AND t - M A T R I X  EXPANSION 

6.1. Weak Disorder 

In the previous part of the paper we have shown that the excess 
current and resistance noise are equal for our model, and also that the Bur- 
nett correlation function equals the correlation function of the fluctuations 
in the diffusion coefficient. This was done without any specification of the 
randomness in the system, i.e., the distribution p(~). In order to make 
explicit calculations of the low-frequency behavior of the spectral densities 
one has to specify the disorder in the system, i.e., the distribution of waiting 
times p(T). We want to distinguish weak and strong disorder, and start 
with the case of weak disorder, where a sufficiently (to be specified later) 
large number of moments (~")  exists. 

In order to study the low-frequency behavior of S1(eo) and SR(co) in 
(3.10) and (4.12) one needs the small-z behavior of the Green's function 
G(q, z; ~)= ( [ zT+ ~ ] - l ) q q  at q=0 .  Following the method introduced in 
Ref. 21 for the d-dimensional SRJM in the field free case this can be 
calculated by making an expansion in powers of the fluctuation matrix A0, 
defined as 

T=  (z>~ +A o (6.1a) 

o r  

(6.1b) 

where Ao is diagonal in coordinate space. Next we introduce the Green's 
function for the uniform average lattice 

go(q, z; e )=  Ez(~) + g~(q)] - '  (6.2) 

and the corresponding single-site Green's function 

~o(Z; e) = (2x)-aflBZ dqEz(z ) + ~(q)]  -1 (6.3) 
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where the integration extends over the first Brillouin zone. Next, we expand 
G(q, z; e) in powers of A o as 

G(q[, z; e) = (go + z2goAo goAo go - -  z 3 g o A o  go3o goAo go + "'" )qq (6.4a) 

= go + ~c2(zgo) 2 gto(Z; e) + "'" (6.4b) 

Here we have used the relations (A0)  = 0 and (Ao goAo)qq =/{2 ~0(z; g) as 
follow form (2.10) and (6.1), and introduced the variance 
( r 2 ) _  ( r ) 2 _  K2. The terms in (6.4b) give the dominant small-z behavior 
as shown in Ref. 21. 

As we are mainly interested in small fields, we evaluate gto(Z; e) only 
for small e and small z: 

i 1(Z<27) _1_ /~2)-- 1/2 (d = 1) 
t / to(Z;  g )  = - -  (47C) - l  l o g [ z ( r )  + e 2] (d=  2) 

~Uo(0; 0 ) -  (4re) I(Z (Z") -t" ~2) 1/2 (d=3)  
(6.5) 

On account of (3.10), (4.12), and (6.4) the dominant low-frequency 
behavior of Sl(co) and SR(co) is proportional to NeG(O, ioo;e)~ 
~c291eg*o(i~o; e). For a full discussion it is important to distinguish an inter- 
mediate-frequency regime dominated by diffusion, where e 2 ~ z ( v ) ~  1 and 
a small-z regime, where z ( r  ) ~  e 2, dominated by the linear drift. 

In the diffusion-dominated regime the current noise has a dominant 
small co singularity 

S,(co)~(I2/N)((v2) _ (T)2) O,)(1/2)d 1 (6.6) 

for d even, and multiplied with log(1/~o) for d odd, with a coefficient that 
can be easily calculated. This result represents the well-known long time tail 
of the Burnett function in the absence of a field, as derived in Refs. 13 and 
21. In the drift-dominated regime the excess current noise, S~X~ [~l a- 2 
for d odd and S~xc(co)- ,~ lel a 2 log(I/e) for d even, is white and gives only a 
small contribution to the Johnson noise. The one-dimensional results in the 
presence of a field were obtained before by Lehr eta/. (N)  

The above results, referring to the case of weak disorder, require the 
existence of, at least, ~c2,-~ ( r  2) - ( z )  2. This condition is by no means suf- 
ficient as will be shown in Section 7. 

In concluding this section we observe that the noise (6.6), S(co)~V/~, 
found in the weakly disordered three-dimensional SRJM, is far from the 
experimentally observed noise S(eo)~l/co. We therefore investigate next 
strongly disordered systems. 
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6.2. Strong Disorder 

In the case of strong disorder ~2 is divergent, indicating that 
G(0, ion; e) -- x2 ~0(i~o; e) in (6.4b) becomes singular for all dimensions both 
in the diffusion- and in the drift-dominated regime. 

It is interesting to know what type of waiting time distribution p(v) 
gives rise to what type of singularity in Si(~o) at low frequencies. The type 
of divergence in x2 depends on the large "c tail of p(~), which may for exam- 
ple be represented as p('c)~v -z -a .  For a~<l the variance diverges, 
corresponding to a case of strong disorder. 

To perform the actual calculations the fluctuation expansion is useless, 
since each term ((goAo)")qq ( /=2 ,  3,...) in (6.4) diverges as (~n). For a 
discussion of this divergence the coordinate representation, in which Ao is a 
diagonal matrix, is more convenient that the Fourier representation. The 
dominant contributions come from those terms, where the labels n on all 
consecutive 3 . .  are the same. Such terms can be resummed by a t-matrix 
resummation, which can be made self-consistent using the effective medium 
approximation (EMA) or hypernetted chain approximation. For the case of 
weak disorder this method correctly gives the dominant low-frequency 
behavior of this d-dimensional jump rate model, as shown in Refs. 21 
and 23. 

In the EMA one replaces the random matrix T by the sure matrix 
v(z)~, where ~(z) is the ("frequency-dependent") waiting time of the effec- 
tive medium. Then the EMA result for G(q, z; e) is 

g(q, z; e )=  [-z~(z) + ~(q)]  -1 (6.7) 

The quantity z(z) is determined from the EMA condition that the average 
t-matrix vanishes. ~25) To work this out we introduce the new fluctuation 
matrix A = T - r ( z ) l ,  diagonal in coordinate space and expand Gk.(Z)= 
(zT+ q~)k-1 in powers of A, where gk. = [zr(z) + ~]kn 1 is the zeroth-order 
term. Next we perform a t-matrix resummation. The t matrix is diagonal an 
has elements 

t . ,  = A,,[1 + zg.,(z) A..]  - '  (6.8) 

where gk.(z) depends only on [k - n[, because of translational invariance of 
the effective medium. This yields the t-matrix expansion of the average 
Green's function 

(Gkn) = g k n - - Z 2  g k I ( t l l )  gin "~- Z2 2 '  g k ' ( t l l )  g l m ( t m m )  gmn 
1 lv~ra 

__ Z 3 ~ '  (gk t t t l~ tmtmm~mm, tm ,m,gm,n> 
Imm ' 

+ z  4 ~"' (~kttU~u, trr~rmtmm~mm,tm,m,~rn,n)+ "'" (6.9) 
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where the labels on two consecutive t matrices have to be different, as 
indicated by the prime. The EMA condition ( t , , )  = (t00) = 0 shows that 
the first nonvanishing t contribution to (6.9) has the structure 
z4~(tl ~,t2~tl ~ t2)~ .  As long as this term is small compared to the EMA 
result, ( ~ k , ) =  gk,, in the relevant low-frequency regime, one can use the 
EMA to determine the dominant small-z behavior. For certain cases of 
strong disorder and dimensionality d~<2 the correction term can be of 
equal importance and then the EMA is only meaningfull in a small density 
expansion. This will be discussed later on. 

The EMA condition ( t o o ) = 0  requires through (6.8) that 

io ~ z-r(z)  dr p(z) 1 + zTt(z; e)[r - r(z)] = 0 (6.10) 

where the average is taken over the waiting time distribution p(z). The 
function gt(z; e) can be obtained from (6.7) by Fourier inversion 

~(Z; e) =-- gOo(Z; e) = (2ZC)--d flBZ dqEzr(z) + Crp(q) ] ' (6.11) 

where comparison of (6.2) and (6.11) shows that the small-z and e behavior 
of gt(z; e) is given by (6.5) with (~)  replaced by r(z). 

In summary, using the EMA we have determined the dominant 
small-z singularity in G(q, z; e)~-g(q, z; e) in (6.7). On account of (3.10) 
and (4.12) this yields for the spectral densities Sz(e)) and SR(co) at low fre- 
quencies 

S i( og ) ~ ~Reg( O, ico ; e )~  9~e E icor( ico ) ] -1 (6.12) 

The frequency-dependent waiting time z(z) of the effective medium can be 
determined by solving (6.10), i.e., ( t o o ) = 0  for a given distribution p(z). 
The results are valid for strong and weak disorder. In the former case we 
have to calculate ~(z) for a given p(r) and compare (6.12) with l/e). This 
will be done in Section 7. In the latter case they reduce to the results (6.4) 
of the fluctuation expansion. 

The EMA results are also very interesting because they allow us to 
discuss the crossover from weak to strong disorder. We find that the weak 
disorder results (6.6) for the d-dimensional SRJM are valid under the con- 
dition that (~1+ a/2) is finite. For instance, the well-known "long time tail" 
(6.6) in the Burnett function of a three-dimensional SRJM, 
((T2)- (~.)2).k//~, is not valid when ( z 2 ) <  ~ ,  but ( r  5/2) is divergent. 
These points will be discussed in the next section by studying some exam- 
pies. 
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7. SPECTRAL DENSITIES FOR STRONG DISORDER 

In this section we construct three examples of strongly disordered 
systems, which successively better model the observed noise spectra, and 
discuss the validity of the EMA results. 

If the waiting time distribution p(T) vanishes or decays exponentially 
at large T, all moments (zn> (n=0 ,  1, 2,...) exist and the system is weakly 
disordered for sure. To have a strongly disordered system we need a dis- 
tribution with an algebraic tail p(z)~T -2-a where a > 0, such that <z > is 
finite. As a first example we consider the (normalized) distribution 

p(z) = (1 + a) TI+aT-2-aO(T - -  TO)  (7.1) 

where O(x) is the unit step function. The average waiting time for this dis- 
tribution is <z> - 1/v =To(1 + 1/a). For 0 < a <  1 the second moment is 
divergent; for 1 < a < 2 the moment <z 3 > is divergent, etc. From the EMA 
condition (6.12) we find for small z 

T(z) = <T> -z~<D - ~(z)] ~ + ""> 

+(--zg ' )"<[z--z(z)]"+l/{ l+zg'[z--z(z)]}> (7.2) 

where a < n < a + 1, such that <z"> is finite, and <z"+~> is divergent. The 
last term gives a singular contribution ~ (zT)~: 

z ( z ) :  < r ) -  x2zT'+ . . . .  (na<z>/sinrca)(zvo~')a+ "" (7.3) 

To determine the leading small-z singularity in z(z) we also need the 
small-z and small-field behavior of g'(z;e), given by (6.5) with <r> 
replaced with v(z). It reads 

gt(z; ~) - gt(0, 0) + " '  + A[zz(z) + g2"]d/2 1 (7.4) 

for d>~2, where the second term is multiplied by ( - ) l o g [ z r ( z ) +  5 2] for 
d=even .  In the drift-dominated regime ( z C w  2) the function ~(z;e)  is 
regular in z and the leading singularity in z(z) is always z a. Thus in this fre- 
quency regime the results for weak disorder are only valid if all (z n > 
(n=  1, 2, 3,...) are finite. In the diffusion-dominated regime (w2~z~v )  or 
in the field free case (5=0,  z~v)  the dominant singularity in g~(z;e) is 
zd/2-1, and therefore the dominant singularity in (7.3) is 

l l +Alzt/2+Blza/2+ "" ( d=  1) 

Z(Z)= <Z> 1 +A2(zlogz)+B2(zlogz)a+ "" ( d = 2 )  (7.5) 

1 + Adz d/2 + Bd za ( d>  2) 

All coefficients Ad, B d ( d =  1, 2,...) can be calculated if so desired. 
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In conclusion: If the terms with A coefficients (or B coefficients) 
dominate we have weak (or strong) disorder. The weak-disorder results 
represent the dominant small-frequency singularity if a >  1 (that is, if 
(32)  < oe) for dimensionality d~<2; if a>d/2  (that is, if (~1+a/2) < oo) 
they dominate for dimensionality d >  2. 

Next, we use (7.3) for an explicit calculation of the spectral densities 
(6.12) in the case of strong disorder. The result for the excess current noise 
in the drift-dominated regime (co ~ ve 2) is 

t ('Coco/2 lel )~ (d=  1 ) 
I 2 a [(%co/2~) Ilog eli a ( d = 2 )  (7.6) S~*~ 
N f  cos(rca/2 ) 

I [%co gs(0; 0)3" (d>~ 3) 

and in the diffusion-dominated regime (ve2~z~  v): 

(2  cos 17ta)-l(~2cov/4) a/2 ( d=  1) 
12 a 

S~X~ = [(%co/4~) Ilog r0col ]a (d=  2) (7.7) 
N f  cos(rca/2 ) 

[roco~P(O; 0)3 ~ (d>  3) 

The resistance noise SR(co) in absence of a field is also determined by (7.7). 
Notice that S~x~ for d >  2 is the same in both low-frequency regimes. 
The result (7.7) for d =  1 was reported before Ref. 26, where it was obtained 
by exactly solving Dyson-Schmidt-type integral equations. Note that the 
current noise for d =  1 in (7.7) is proportional to I 2, but in (7.6) to I z-a, 
since I is proportional to e for small e. Related non-Ohmic behavior of the 
current itself in random barrier models for d~<2 was discussed by 
Movaghar et a[. (27) 

Even more interesting is the frequency dependence in (7.6) and (7.7). 
In all cases one sees that lowering the exponent a (increasing the disorder) 
makes the low-frequency divergence stronger. In the limit a ~ 0 the excess 
spectral density is seen to be inversely proportional to the frequency, i.e., it 
shows I / f  noise. However, (7.7) is not valid as a ~ 0 at f ixed frequency, since 
co < v ~ a/% in (7.7). 

Thus, the strongly disordered system with p(T)~v - z - a  ( a >  0) gives a 
spectral density of excess current and resistance noise, S(co)~co-~ with 7 = 
1 - a ,  where a may be chosen arbitrarily small. This functional form holds 
to arbitrarily small co, and the integrated total intensity (3.12) is finite and 
proportional to (Voo/V - 1) = [a(a + 2)] -1 

However, the actual range of 7 values, found in experiments, is 0.9 < 
7,%<l.3. For p(z) with an algebraic tail described by (7.1) the exponent ;J 
remains always below unity. We therefore present as a second example a 
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distribution which behaves as S(~o)~ 1/o~ in a large range of frequencies. 
Consider the distribution 

p(~) = A~-20(~ - T0) 0(~ + - T) (7.8) 

with 1/A = 1 / % -  I /z+,  where ro /T+~l  (e.g., if l / f  noise is to be found in a 
frequency range of five decades, typically T0/r+ < 1 0 - 7 ) .  The upper cutoff 
r+ is needed to keep the average waiting time v - l =  (r)---z01og(T+/%) 
finite. In the frequency domain l/T+ ~ z ~  1/To we now find from the EMA 
condition (6.10) 

~(z)-~ To log[ToZ~(Z; e)-I 1 (7.9) 

In three dimensions we obtain for z,~v from (3.10), (6.12), and (7.9) 

S~XC(o~) = (I2/Nf) 1og(z+/To){ [-log ToOTt(0; 0)] 2 + ~2/4} -1 (7.10) 

This result is valid for l/T+ ~co~ 1/To and is close to 1/f noise. For very 
small frequencies ([z[ = m ~ l / ~ +  the EMA waiting time r(z) is regular in 
z =0,  and the current noise becomes white, S(~o)~const. 

However, if we compare (7.10) with (1.1) we find that the terms in 
(7.10) which play the role of the Hooge factor ~ /  in (1.1) (which is 
typically 10 -3 ) are not small, but of order unity. This is related to the fact 
that we have allowed each site to be a deep well. It seems more relevant to 
consider situations where only a small fraction p (0 < p ~ 1 ) of the sites is a 
deep well (diluted randomness), the other fraction 1 - p  being "host" sites 
of a regular uniform lattice with a fixed waiting time T0. As can be seen 
from (7.10), the diluted randomness is not a mechanism for explaining 1If 
noise, but only a refinement of the model to account for a small Hooge fac- 
tor. 

We also allow for another refinement to account of a noise exponent 7 
in S(~o)~~o -~, different from unity. As can be seen in the first example, 
such behavior can be modeled by a power law distribution p(T) as in (7.1). 

Taking into account this aspect and the dilution we consider as a third 
example the following distribution of waiting times: 

p ( ~ ) = ( 1 - - p ) 6 ( T - - T o ) + p ( l + a ) ~ + ~ T  -2 ~0(~--'Co) 0(T + -- ~) (7.11) 

The exponent a may take values - 1  < a < 1. The cutoff T+ (again with 
T+~To) is needed for a < 0  in order to keep (~)  and thus the resistance 
finite: 

{ ,+el 1 { v ) = %  1 p + p  1 (7.12) 
v c/ 
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The EMA condition (6.10) yields in the intermediate-frequency range, 
where I /r+ ~zgt~ 1/Zo, 

r(z)-~%{1 +p/a-  [p~(1 + a)/sin na][zZogt(z; e)] '}  (7.13) 

and again r(z) is regular for extremely low frequencies r+ z~U~ 1. The spec- 
tral densities of excess current and resistance fluctuations follow from 
(6.12). In this example we have several small parameters: %/r+,  e, and p, 
which forces us to divide the low-frequency regime into several subregimes. 
The case r0/r + ~ e 2 < 1 is of relevance only here. 

For extremely low frequencies (co~ l / r+)  the noise is white; in the 
drift-dominated regime ( l / r+ ~co ~e2/to) the noise has the same frequency 
dependence as in (7.6) with a somewhat different coefficient that can be 
easily calculated. In the diffusion-dominated low-frequency regime 
(e2 ~co%,~ 1) the singular term in (7.13) would for a < 0  dominate the con- 
stant term if Zro<pl/l'( However, for typical p values (p <0.1) and typical 
(negative) a values ([a[ <0.1) this is never the case. Thus in the case of 
diluted randomness one has for all a the inequality p(zro)a~ 1. Hence the 
excess current noise, obtained from (6.12) and (7.13), has the form 

S~C(co) ,,~ p(12/N)(co/coo) -~ (7.14) 

with 

I -a/2 (d=  1) 
7=  - a  ( d ) 2 )  

where all relevant prefactors have been absorbed in the definition of co o. 
Thus the noise level or Hooge factor c~H~ 10-4-10 -3 in (1.1) is essentially 
the (small) concentration p of deep wells. It shows that each deep well 
independently gives a contribution to the noise spectrum. Equation (7.14) 
is universal in the sense that the cutoff times % and r+ ,  introduced in 
(7.11), do not enter (7.14) in the case of true l / f  noise (7 = 1). 

Before concluding this section it is of interest to use example (7.11) 
also to calculate the current noise for "hot electrons," where e = elE/2kT is 
large compared to unity. The EMA result (7.13) is still valid for small z, 
and 7X(z; e) - e-~ for ~ ~ 1 on account of (6.11 ). To simplify the calculations 
we put a = 0 in (7.13), so that 

t ( z )~-ro[1-p-p  log(zroe-~)] 

where I P tog Zrol ~ 1. The current noise is then 

s~xc(co) _~ ~.(E)(I~/Wf) 

(7.15) 

(7.16) 

822/41/5-6-5 
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with a field-dependent Hooge factor 

an(E) ~- p/(1 + pe)2 = ~n/(1 + E/Ec) 2 (7.17) 

where the critical field is E c = 2kT/(pel). 
For a typical situation p -~ 10 3 and a lattice distance (mean free path) 

l - 1 0 4 ~  o n e  has Ec-~ 107 V/m which is a physically unrealistic value. A 
similar reduction of the noise level for hot electrons has been observed 
experimentally by Kleinpenning (28) and Bosman et aL (29) For the case a ~ 0 
in (7.13) we obtain essentially the same results (7.16) and (7.17) if e [a[ < 1, 
whereas ~n(E) decays exponentially ,,~exp(-[al 5) for e [a[ > 1. 

In the last part of this section we investigate the validity of the EMA 
in the case of strong disorder and calculate the first nonvanishing correc- 
tion to ( ( ~ . ) - g k ,  in (6.9). According to (3.10) and (4.11) we need the 
Fourier transform (2.10) of Eq. (6.9) at q = 0: 

1 z 4 1 
G(0'Gg)=z--~q- [z'r(z)]~Nm~n gmngnmgmn(/2)2q-'" (7.18) 

The double sum yields for small z and d <  3 in the diffusion-dominated 
regime (eZv ,~ z,~ 1 ): 

1 
gm.g.mgm.=(2~) 2a f dq f dq' g(q)g(q')g(q+q') 

m~n 
- [~ (z ) ]  3~ [zr(z)] a-3 (7.19) 

The integrals are estimated by power counting and ~u3 may be neglected on 
account of (6.5). In the drift-dominated regime (z ~ v~ 2) the right-hand side 
of (7.19) approaches a constant value as z ~ 0. For the calculation of ( t  2 ) 
in (7.18) we restrict our discussion to the third example (7.11) with p =  1, 
i.e., p ( r ) ~  -2 ~ and a<d/2, and we find from (6.8) and (6.10): 

( t  2) = ( d r  p(z) 

and (7.18) becomes 

I-~ - ~ ( z ) ]  2 
{1  + z~[r - r ( z ) ] }  2"~(ztP)~-I (7 .20 )  

G(0, z;/~)~ (z'g)-l[t +zdTjd-4(zttl)2a-2+ "" "] (7.21) 

where r = r(z) has the value z(z)~ 1 + (z~) a because of (6.3) with a < d/2. 
For dimensionality 2 < d~< 3, where 7t(0) is finite, we find 

(z-~(l+za+za-Z+2a+ "") ( a > 0 )  (7.22) 
G(0, z; ~)~~z 1-~(1 +y-2)~o+1)  ( a < 0 )  
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Thus for all a > - 1  the correction terms to the EMA are always negligible 
both in diffusion and in the drift-dominated regime for 2 < d~< 3. 

The same conclusions apply to the drift-dominated regime for d ~< 2. In 
the diffusion-dominated regime we find similarly for d =  2 and a ~> 0 

G ( O , z ; e = O ) ~ _ ( z l o g z ) - Z [ l + z 2 ~ ( l o g z ) 2 ~  4 + . . . ]  (a>~0) (7.23) 

For a < 0 the higher correction terms in (7.18) are always dominating the 
EMA result. It also follows from (7.23) for a = 0 that the f i rs t  non -EMA-  
contribution to (7.10) is of relative order (log co) -4. This contribution is of 
the same order of magnitude as the EMA contribution for the relevant fre- 
quencies. 

Next, we consider the diffusion-dominated regime for d <  2, where 
g j ( z ) ~ [ z z ( z ) ] ( d  2)/2. For a > 0  and 0 < d < 2  we have ~ (z )~ l  + S  d/2 from 
(6.3) and (7.21) gives 

G(0, z; e)~z-1(1 + z ~`a/2 + z~a + . . . )  (7.24) 

The term ~ z  ad/2 is an EMA contribution; the term ~ z  ~d is not from EMA. 
For a $ 0 (which is the case of main interest for I / f  noise) the EMA breaks 
down, because both terms are of comparable size. For an exact approach 
in the one-dimensional case, see Ref. 26. 

For a < 0 and 0 < d <  2 we find from (6.3) the estimate z ( z ) ~ z  ~ )  with 
fl(a) = ad/(2 + 2a - da). Here (7.21) gives 

G(0, z; e)~z-l-~(a)[1 + O(z~ (7.25) 

and the EMA- and non-EMA contributions are of equal size. 
In conclusions, for dimensionality d~<2 and the parameter a < 0  the 

EMA is incorrect in the diffusion dominated regime. In the drift dominated 
regime the EMA is correct, but the current noise is not proportional to I 2 

for small currents; cf. (7.6). However, in the context of 1/ f  noise only the 
case of diluted randomness with p ~ 1 [see Eq. (7.11] is physically relevant. 
Here one can easily verify, using similar arguments as above, that the non- 
EMA contributions are O(p 2) and the EMA contributions O(p).  Thus for 
diluted randomness the EMA correctly describes the low-frequency 
behavior of G(0, z; e) for all values of d, even in the case of strong disorder. 

8. C O N C L U S I O N  

We have considered a hopping model, called symmetric random jump 
rate model (SRJM), on a d-dimensional lattice with quenched random 



798 Nieuwenhuizen and Ernst 

jump rates w,~l / z . ,  associated with each site n. This model admits 
mobility fluctuations, but no fluctuations in the number of charge carriers. 

Our main purpose was to relate the low-frequency behavior of excess 
current noise S~XC(m) and resistance noise SD(o~) to the "long time tails" 
occurring in diffusional systems with static disorder. For weak disorder we 
find S(m)~ [ (z  2 ) -  (~)2] m(d 2)/2 multiplied with a factor log(l/co) for 
d=  even. For strong disorder, described by a distribution of waiting times 
p(z)"~'~ - 2 . a  with - 1  < a <  1, S(m)~m -1+a/2 for d=  1 and S(m)~m -1+~ 
for d>2.  The noise level or Hooge factor ell, defined in (1.1), equals the 
fraction of sites with "defects" (deep wells). The low-frequency behavior is 
only valid for m >> l/v+, which is the inverse of the large cutoff time in p(z), 
not determined within the model. 

Thus, only for strongly disordered systems, where the variance 
( ( z - ( z ) )  2) is divergent (for an exception see discussion at the end of 
Section 6), the spectral densities S~xc(m) and SD(m) with a ~ 0  resemble 1If 
noise. 

The integrated noise is expressed in terms of the dc resistance and the 
high-frequency resistance, which reaches a plateau value; cf. (3.12) and 
(4.20). 

The SRJM differs in one respect to markedly from the standard 
models for 1If noise. (1) In the standard models the average current 
correlation in the steady state decays as exp(- t /z)  and the corresponding 
spectrum behaves as S(m)~r/(1 + (7,02l"2). If one assumes a distribution p(r) 
of characteristic waiting times behaving approximately as p(z)~z -1 in a 
large interval Zo < ~ < z+, then the average spectrum shows 1If behavior 
for l/r+ ~ m ~  l/z0, where ro and r+ are defined below (7.8). This type of 
waiting time distribution has been experimentally observed in relaxation 
processes, which are thermally activated, (1) or controlled by tunneling 
processes. ~176 In the former case %_~z0 exp(U,,/kT), where U. is a ran- 
dom activation energy; in the latter case z, ~- Zo exp(a2.), where 2, is a ran- 
dom tunneling distance. Both variables have a broad distribution 
~(U)~const  and :!3(2),-~const, if p(z)~l/z.  However, there are no 
microscopic theories to explain a broad distribution D(U). 

The difference with the standard models shows clearly in the average 
current correlation ( ~ e x p ( - t / r ) )  and in the average spectral density 
S(m)~ ('c2/(1 -1-m2Z 2) ), The additional factor z inside the average [cf. T in 
(2.9)] comes from the steady state distribution (2.3) where a carrier has a 
probability ~ of being at a site with waiting time z. Thus, the SRJM 
shows 1If behavior in S(m) if one assumes a waiting time distribution 
behaving approximately as p(z)~ 1/~ 2 or equivalently a broad distribution, 
fi(w)~const, of transition rates w.~l /%.  If the transition rates w. are 
related to a thermally activated process with activation energy U., i.e., 
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w, = w0 exp(-U,/kT),  where w0 is a characteristic attempt frequency, we 
find a thermal distribution of the activation energies: D(U)~exp(-U/kT) .  
In the standard theory one has a broad distribution D(U). Also in the 
present case we are unable to derive this distribution from a microscopic 
model. 

Therefore, both the SRJM and the standard hopping models with 
quenched disorder reduce the explanation of the dynamic phenomenon of 
1If noise to the explanation of the static disorder. Each model has its own 
advantages and disadvantages. As an example of a standard model 
Machta et al. {~1) have considered a two-state hopping model. This model 
has the attractive feature of a broad distribution of logz, as found in 
experiments. (1) However, it shows no mobility fluctuations, but only fluc- 
tuations in the number of charge carriers. According to H o o g e e t a l .  {2) 
experiments confirm that mobility fluctuations and not number fluctuations 
are in general the dominant noise source in resistance fluctuations. In the 
SRJM the situation is reversed: log T does not have a broad distribution, 
but an exponential one; it shows mobility fluctuations but no number fluc- 
tuations. 

Furthermore, we have given a microscopic derivation of the equality 
of excess current and resistance noise, and related these quantities to the 
four-point-velocity correlation and the Burnett correlation function. These 
equalities are valid for weak and strong disorder. 
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APPENDIX 

A standard procedure (211 in generalized hydrodynamic (here the elec- 
tric field is vanishing) is to express the response function (2.7) 

~ ( q , z ) = { z + q Z O ( q , z ) }  ' (A1) 

in terms of a generalized transport coefficient O(q, z). In order to simplify 
the discussion we have taken q along the x axis. 0 has a q expansion: 

q20(q, z) = q2 x 02(z ) - q4 (Q4(Z)  ..1_ . . ,  (A2) 
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where [cf. (3.4) and (3.5)] 

1 (  t ? ) "  q=O On(Z)~----~. i-~q~ [~(q,z)] 1 (A3) 

Since q~ derivatives of  the response function yield m o m e n t s  of the dis- 
p lacements  it is s t ra ightforward to verify that  the inverse Laplace  trans- 
forms U,( t )  satisfy 

u~(t) = <Vx(t) v~(o) > 

U4(t) = f~ dr f~ &'[ <Vx(t)Vx(r)v~(r')v~(O)> 

- <vAt) Vx(Z)><vx(~') v~(0)>] 

(A4) 

where U2(t ) equals the V A C F  (3.7) and U4(t) is the modified Burnet t  
function. The  usual Burnet t  correlat ion function /~(t) defined in (5.1), dif- 
fers f rom this expression because the cumulan t  ( < " . > >  contains two 
addi t ional  terms with a p roduc t  of two VACF ' s  [see (1.14)]. 

F o r  the present  model  these addi t ional  terms are D Z [ 6 ( t - { ) 6 ( ~ ) +  
6 ( 0  6 ( v - { ) ]  according to (5.5), and do not  contr ibute  to (A4). Thus  we 
have for the SRJM 

U4(/) = fl(t) (A5) 

which is a special p roper ty  of this model ,  and not  valid for general models  
(see, e.g., Ref. 13). Combina t i on  of (A5) and (A3) also yields (5.2). 
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